SJCET B.Tech 2007-2011

This video is dedicated to all those who have been a part of my college years…my friends,classmates, teachers,schoolmates…you have been a witness of my growth and so all our memories together will surely linger throughout the years of my life…yes! all of you are great since you brought a great impact into my life…


Inside view : Induction Heater

Induction cooking heats a cooking vessel by magnetic induction, instead of by thermal conduction from a flame, or an electrical heating element. Because inductive heating directly heats the vessel, very rapid increases in temperature can be achieved.

An induction cooker transfers electrical energy by induction from a coil of wire into a metal vessel that must be ferromagnetic. The coil is mounted under the cooking surface, and a high frequency (e.g. 24 kHz) alternating current is passed through it. The current in the coil creates a dynamic magnetic field. When an electrically conductive pot is brought close to the cooking surface, and the pan is thicker than the skin depth, the magnetic field induces large eddy currents in the pot. The eddy currents flow through the electrical resistance of the pot to produce heat; the pot then in turn heats its contents by heat conduction.

The cooking vessel typically needs to be made of a suitable stainless steel or iron. The increased magnetic permeability of the material decreases the skin depth, concentrating the current near the surface of the metal, and so the electrical resistance will be further increased. Some energy will be dissipated wastefully by the current flowing through the resistance of the coil. To reduce the skin effect and consequent heat generation in the coil, it is made from litz wire, which is a bundle of many smaller insulated wires in parallel. The coil has many turns, while the bottom of the pot effectively forms a single shorted turn. This forms a transformer that steps down the voltage and steps up the current. The resistance of the pot, as viewed from the primary coil, appears larger. In turn, most of the energy becomes heat in the high-resistance steel, while the driving coil stays cool.

Often a thermostat is present to measure the temperature of the pan. This helps prevent the pan from severely overheating if accidentally heated empty or boiled dry, but also can allow the induction cooker to maintain a target temperature.